Inhaltsverzeichnis
PART I
PRINCIPLES
Introduction
Solar Irradiance in Technical Applications
Quantifying Useful Solar Irradiation
Solar Thermal Applications
Calculating the Solar Contribution
Conclusions
SOLAR THERMAL MARKET
Introduction
Collector Types
Regional Markets
Market Trends
THERMAL SOLAR ENERGY FOR POLYMER EXPERTS
Solar Thermal Systems and Technical Requirements
Overview of Solar Thermal Applications
Solar Thermal Collectors
Small to Medium Size Storages
Sources of Further Information
CONVENTIONAL COLLECTORS, HEAT STORES, AND COATINGS
Collectors
Material Properties of Insulations
Heat Store
Other Components
Analysis of Typical Combisystems
Definition of Polymeric Based Solar Thermal Systems
Life Cycle Assessment Based on Cumulated Energy Demand, Energy Payback Time, and Overall Energy Savings
Cumulated Energy Demand, Energy Payback Time, and Overall Energy Savings for Conventional and Polymeric Based Domestic Hot Water Systems
THERMAL LOADS ON SOLAR COLLECTORS AND OPTIONS FOR THEIR REDUCTION
Introduction
Results of Monitoring Temperature Loads
Measures for Reduction of the Temperature Loads
STANDARDS, PERFORMANCE TESTS OF SOLAR THERMAL SYSTEMS
Introduction
Collectors
Solar Thermal Systems
Conclusion
PART II
PLASTICS MARKET
POLYMERIC MATERIALS
Introduction
Material Structure and Morphology of Polymers
Inner Mobility and Thermal Transitions of Polymers
Polymer Additives and Compounds
PROCESSING
Structural Polymeric Materials
Paint Coatings for Polymeric Solar Absorbers and Their Applications
POLYMER DURABILITY FOR SOLAR THERMAL APPLICATIONS
Introduction
Polymeric Glazing
Polymeric Absorbers and Heat Exchangers
Conclusion
PLASTICS PROPERTIES AND MATERIAL SELECTION
Introduction
How to Select the Right Material
Material Databases
Selection Criteria
Real Life Example: Standard Collector in Plastic (1:1 Substitution)
Summary
Part III
STATE OF THE ART: POLYMERIC MATERIALS IN SOLAR THERMAL APPLICATIONS
Solar Collectors
Small to Mid-Sized Polymeric Heat Stores
Polymeric Liners for Seasonal Thermal Energy Stores
STRUCTURAL POLYMERIC MATERIALS - AGING BEHAVIOR OF SOLAR ABSORBER MATERIALS
THERMOTROPIC LAYERS FOR OVERHEATING PROTECTION OF ALL-POLYMERIC FLAT PLATE SOLAR COLLECTORS
APPLICATION OF POSS COMPOUNDS FOR MODIFICATION OF THE WETTING PROPERTIES OF TISS PAINT COATINGS
CONCEPTUAL DESIGN OF COLLECTORS
Introduction
Calculation of Collector Efficiency
Flow Optimization
Optimization of the Fluid Dynamics in Polymeric Collectors
Collector Mechanics
Conclusion
COLLECTORS AND HEAT STORES
Introduction
Solar Absorber Made of High-Performance Plastics
Flate Plate Collector with Overheating Protection
Flat Plate Collectors with a Thermotropic Layer
Solar Storage Tank with Polymeric Sealing Technology with Storage Volumes from 2 to 100 m3
DURABILITY TESTS OF POLYMERIC COMPONENTS
Introduction
Twenty Years Outdoor Weathering of Polymeric Materials for use as Collector Glazing
Accelerated Lifetime Testing of a Polymeric Absorber Coating
Evaluation of Temperature Resistance of a Polymer Absorber in a Solar Collector
Determination of Water Vapor Transport through Polymeric Materials at Raised Temperatures
ARCHITECTURALLY APPEALING SOLAR THERMAL SYSTEMS - A MARKETING TOOL IN ORDER TO ATTRACT NEW CUSTOMERS AND MARKET SEGMENTS
Introduction
Architectural Integration as a Marketing Tool
Web Database
Examples
OBSTACLES FOR THE APPLICATION OF CURRENT STANDARDS
Introduction
Internal Absorber Pressure Test
High-Temperature Resistance and Exposure Tests
Mechanical Load Test
Impact Resistance Test
Discontinuous Efficiency Curves