Florian Rudolf-Miklau, Siegfried Sauermoser, Arthur I. Mears (Eds.) The Technical Avalanche Protection Handbook

1st Edition

TABLE OF CONTENTS

Prologue

1 Introduction

- 1.1 Avalanche Hazards
- 1.1.1 Overview and Terminology
- 1.1.2 Avalanche Hazards: Historical and Geographical Relevance
- 1.2 Technical Avalanche Defense: Classification
- 1.2.1 Classification Scheme of Defense Measures and Their Effects
- 1.2.2 Permanent Technical Avalanche Protection (Defense Structures)
- 1.2.3 Technical Avalanche Defense with Temporary Effects
- 1.3 Avalanche Disasters, Development of Avalanche Defense: Historical Overview
- 1.3.1 Chronicle of Avalanche Catastrophes
- 1.3.1.1 Avalanche Disasters in the Alps
- 1.3.1.2 Avalanche Disasters in Other Regions
- 1.4 History of Avalanche Defense
- 1.4.1 Historical Development in Europe

2 Avalanches: Evolution and Impact

- 2.1 Characteristics of Avalanches
- 2.1.1 Definitions and Classifications
- 2.1.2 Spatial and Temporal Occurrence of Avalanches
- 2.2 Meteorological Principles of Avalanche Evolution
- 2.2.1 Weather Conditions Forming Avalanches in the European Alps
- 2.2.1.1 General Remarks
- 2.2.1.2 Northwestern (Precipitation Build Up) Area
- 2.2.1.3 Western Weather Conditions
- 2.2.1.4 South Foehn Situation
- 2.2.1.5 Occlusion from the North East North-East Location
- 2.2.2 Weather Conditions Forming Avalanches in North America (Western Ranges)
- 2.2.3 Weather Conditions Forming Avalanches in Other Mountain Regions
- 2.3. Nivological Principles of Avalanche Evolution
- 2.3.1 Properties of Material "Snow"
- 2.3.2 Genesis of Snow
- 2.3.3 Snow Metamorphism
- 2.3.3.1 General Remarks
- 2.3.3.2 Principles of Snow Metamorphosis
- 2.3.3.3 Initial Metamorphism
- 2.3.3.4 Equilibrium Growth Metamorphism
- 2.3.3.5 Faceting

F. Rudolf-Miklau / S. Sauermosor / A.I. Mears (Eds.) The Technical Avalanche Protection Handbook

Ernst & Sohn

- 2.3.3.6 Melt-Freeze Metamorphism
- 2.3.4 Snowpack
- 2.3.4.1 Formation of Snowpack and Layering
- 2.3.4.2 Movements and Tensions in Snow Cover
- 2.3.4.3 Avalanche Classification according to Evolution
- 2.4 Frequency and Magnitude of Avalanche Events
- 2.4.1 Criteria for Frequency, Magnitude and Risk Assessment
- 2.4.2 Frequency (Recurrence) of Avalanche Events
- 2.4.3 Intensity of Avalanche Impact
- 2.4.4 Magnitude of Avalanche Events
- 2.5 Morphological Principles of Avalanche Evolution
- 2.5.1 Avalanche Catchment Area
- 2.5.2 Avalanche Starting Zone
- 2.5.3 Avalanche Path
- 2.5.4 Runout Zone (Deposition Zone)
- 2.6 Avalanche Protection Forest
- 2.6.1 Effects of Vegetation and Forest on Avalanche Formation
- 2.6.2 Effects of Avalanches on Trees and Forests

3 Avalanche Dynamics: Models and Impact

- 3.1 Principles of Avalanche Dynamics
- 3.1.1 Physical Principles
- 3.1.1.1 General Remarks
- 3.1.1.2 Characteristic Criteria of Avalanche Movement
- 3.1.1.3 Avalanche Velocity
- 3.1.1.4 Model Laws of Avalanche Movement
- 3.1.1.5 Mathematical Models for Avalanche Dynamics
- 3.1.1.6 Constitutive Law
- 3.1.2 Dynamics of Flow and Powder Snow Avalanches
- 3.1.2.1 Avalanche Release
- 3.1.2.2 Movement of Flow Avalanches
- 3.1.2.3 Movement of Powder Snow Avalanches
- 3.1.2.4 Movement of Mixed-motion Avalanches
- 3.1.2.5 Movement of Wet Snow Avalanches and Slush Flows
- 3.2 Numerical Avalanche Models and Simulation
- 3.2.1 Application of Avalanche Models
- 3.2.2 Principles and Data for Avalanche Modeling
- 3.2.3 Avalanche Model Overview: Classification
- 3.2.4 Statistical-Topographical Avalanche Models
- 3.2.4.1 Alpha-Beta Model
- 3.2.4.2 Other Statistical Models
- 3.2.5 Physical-Dynamic Avalanche Models
- 3.2.5.1 Voellmy-Salm Model
- 3.2.5.2 AVAL-1D
- 3.2.5.3 RAMMS
- 3.2.5.4 SamosAT
- 3.2.5.5 Application of Avalanche Models in Engineering Practice
- 3.3 Avalanche Action on Objects (Obstacles)

- 3.3.1 Dynamic Avalanche Action
- 3.3.1.1 Principles
- 3.3.1.2 Action by Flow Avalanche on Obstacles Obstructing the Flow
- 3.3.1.3 Action by Flow Avalanches on Narrow Obstacles
- 3.3.1.4 Action by Powder Snow Avalanches
- 3.3.1.5 Impact of Massive Components (Rocks, Trunks)
- 3.3.1.6 Action by Vertical Avalanche Deflection
- 3.3.1.7 Action by Wet Snow Avalanches
- 3.3.2 Damage Effects of Avalanches
- 3.3.2.1 General Remarks
- 3.3.2.2 Damage Effects by Flow Avalanches
- 3.3.2.3 Damage Effects by Powder Snow Avalanches

4 Avalanche Hazard Assessment and Planning of Protection Measures

- 4.1 Avalanche Hazard (Risk) Assessment and Mapping
- 4.1.1 Model of Hazard Assessment and Risk Concept
- 4.1.2 Avalanche Hazards and Risks: Definitions and Quantification
- 4.1.2.1 Avalanche Hazards and Hazard Scenarios
- 4.1.2.2. Avalanche Damage and Risk
- 4.1.3 Methods of Hazard Assessment
- 4.1.4 Avalanche Risk Assessment
- 4.2 Mapping of Avalanche Hazards and Risks
- 4.2.1 Overview
- 4.2.2 Hazard (Information) Maps
- 4.2.3 Hazard Zone Plans
- 4.2.4 Risk Maps
- 4.3 Planning of Avalanche Defense Structures
- 4.3.1 Principles of Planning
- 4.3.2 Objectives of Avalanche Defense
- 4.3.2.1 Principles of Protective Objectives
- 4.3.2.2 Quantitative and Risk-Based Protection Goals
- 4.3.3 Sectorial Protection Concepts
- 4.3.3.1 Principles
- 4.3.3.2 Protection Concept for Settlement Areas
- 4.3.3.3 Protection Concepts for Traffic Routes and Supply Lines
- 4.3.3.4 Protection Concepts for Ski Areas
- 4.3.4 Planning Process for Technical Avalanche Defense Measures
- 4.3.4.1 General Planning Procedures in Avalanche Defense
- 4.3.4.2 Design of Avalanche Defense Structures

5 Structural Avalanche Protection: Defense Systems and Construction Types

- 5.1 Principles of structural avalanche defense
- 5.2 Structural Avalanche Defense in the Starting zone
- 5.2.1 Overview and Classification
- 5.2.2 Snow Supporting Structures: Construction Types
- 5.2.2.1 Protection Effect of Snow Supporting Structures
- 5.2.2.2 Classification
- 5.2.2.3 Construction Types: Snow Bridge of Steel

Verlag Ernst & Sohn, Advertising Dept. Rotherstr 21, 10245 Berlin, Germany, Tel + 49(0) 30/47031-234, Fax -230, E-mail: fred.doischer@wiley.com ^ www.ernst-und-sohn.de

- 5.2.2.4 Construction Type: Snow Net
- 5.2.2.5 Construction Type: Combined Snow Bridge
- 5.2.2.6 Construction Type: Snow Bridge and Snow Rakes of Wood
- 5.2.2.7 Historical Construction Types of Snow Supporting Structures
- 5.2.2.8 Type Approval Test
- 5.2.3 Foundation and Anchoring of Snow Supporting Structures
- 5.2.3.1 General Remarks
- 5.2.3.2 Methods of Foundation (Anchorage)
- 5.2.3.3 Historical Foundation Methods
- 5.2.4 Snowdrift Control Structures
- 5.2.4.1 Effects and Classification of Snowdrift Control Structures
- 5.2.4.2 Construction Type: Snowdrift Fence
- 5.2.4.3 Construction Type: Wind Baffle
- 5.2.4.4 Construction Type: Wind Roof (Jet Roof)
- 5.2.5 Snow Glide Protection Structures
- 5.2.5.1 Protection Effects
- 5.2.5.2 Snow Glide Protection Methods: Overview
- 5.2.5.3 Construction Type: Array of Posts
- 5.2.5.4 Construction Type: Snow Glide Tripod
- 5.2.5.5 Construction Type: Berms
- 5.3 Structural Avalanche Defense in the Avalanche Path and Deposition Zone
- 5.3.1 Classification
- 5.3.2 Longitudinal Defense Structures (Construction types to Guide and Deflect Avalanches)
- 5.3.2.1 Protection Effects of Avalanche Deflecting Structures
- 5.3.2.2 Construction Type: Guiding Wall
- 5.3.2.3 Construction Type: Deflecting Dam (Wall)
- 5.3.3 Transverse Defense Structures (Construction Types to Catch or Retard Avalanches)
- 5.3.3.1 Protections Effects of Avalanche Catching or Retarding Structures
- 5.3.3.2 Construction Type: Catching Dam (Wall)
- 5.3.3.3 Construction Type: Avalanche-Retarding Cone
- 5.3.3.4 Construction Type: Avalanche Breaker
- 5.3.4 Avalanche Galleries and Tunnels
- 5.3.4.1 Construction Type: Avalanche Gallery (Tunnel)
- 5.3.4.2 Construction Type: Avalanche-secure Pipe Bridge

6 Structural Avalanche Defense: Design and Construction

- 6.1 Normative Bases of Design
- 6.1.1 EUROCODE and National Standards in Austria, Germany and Switzerland
- 6.1.2 American National Standard (ANSI) and Canadian Standard (CSA)
- 6.2 Design of Avalanche Defense Structures in the Starting Zone
- 6.2.1 General Rules for Designing Avalanche Defense Structures
- 6.2.2 Design Snow Height
- 6.2.2.1 Methodology
- 6.2.2.2 Extreme Snow Height in Switzerland and Austria
- 6.2.2.3 Extreme Snow Height in USA and Canada
- 6.2.3 Position of Protected Objects

Verlag Ernst & Sohn, Advertising Dept. Rotherstr 21, 10245 Berlin, Germany, Tel + 49(0) 30/47031-234, Fax -230, E-mail: fred.doischer@wiley.com ^ www.ernst-und-sohn.de

- 6.2.4 Static Systems for Avalanche Defense Structures
- 6.2.5 Actions on Snow Supporting Structures
- 6.2.5.1 Overview and Classification
- 6.2.5.2 Snow Pressure
- 6.2.5.3 End-Effect Loads
- 6.2.5.4 Resulting Snow Pressure and Load Arrangement
- 6.2.5.5 Snow Pressure on Grate
- 6.2.5.6 Snow Load on Slim Components (Structures)
- 6.2.5.7 Lateral Loads
- 6.2.5.8 Dead Weight
- 6.2.5.9 Wind Load
- 6.2.5.10 Other Actions
- 6.2.6 Layout and Configuration of Snow Supporting Structures in the Starting Area
- 6.2.6.1 General Rules for Layout
- 6.2.6.2 Slope Inclination Suitable for Snow Supporting Structures
- 6.2.6.3 Vertical Extension of Defense Area
- 6.2.6.4 Horizontal Extension of Defense Area
- 6.2.6.5 Concepts for Arrangement of Snow Supporting Structures
- 6.2.6.6 Height of Snow Supporting Structures
- 6.2.6.7 Distance between (Rows of) Structures in the Line of Slope
- 6.2.6.8 Lateral Distance between Structures
- 6.2.6.9 Combination of Snow Supporting Structures with Snow Glide Defense Structures
- 6.2.7 Building Materials for Avalanche Defense Structures
- 6.2.7.1 General Fundamentals of Building Materials
- 6.2.7.2 Construction Steel
- 6.2.7.3 Construction Wood
- 6.2.7.4 Fasteners and Connecting Means
- 6.2.7.5 Ropes and Reinforcing Steel
- 6.2.7.6 Anchor Grout
- 6.2.8 Structure Assessment and Design
- 6.2.8.1 General Fundamentals of Structure Assessment and Design
- 6.2.8.2 Action Combinations
- 6.2.8.3 Support Reactions and Internal Forces
- 6.2.8.4 Dimensioning of Supporting Constructions of Snow Supporting Structures in Steel
- 6.2.8.5 Dimensioning of Grates of Snow Supporting Structures in Steel
- 6.2.8.6 Dimensioning of Snow Supporting Structures in Wood
- 6.2.8.7 Dimensioning of Snow Nets
- 6.2.8.8 Dimensioning of Snow Rakes
- 6.2.8.9 Corrosion Protection for Steel Structures Above Ground
- 6.2.9 Geotechnical Design of the Foundations of Snow Supporting Structures
- 6.2.9.1 Principles of Geotechnical Design
- 6.2.9.2 Design of Foundations of Snow Supporting Structures
- 6.2.9.3 Design Situations
- 6.2.9.4 Partial Factors of Safety for Pile Foundations
- 6.2.9.5 Design of Foundations for Supports
- 6.2.9.6 Design of Girder Foundations
- 6.2.9.7 Corrosion Protection for Foundations
- 6.2.9.8 Testing of Micropiles

Verlag Ernst & Sohn, Advertising Dept. Rotherstr 21, 10245 Berlin, Germany, Tel + 49(0) 30/47031-234, Fax -230, E-mail: fred.doischer@wiley.com [^] www.ernst-und-sohn.de

- 6.2.10 Design of Snow Supporting Structures on Permafrost Sites
- 6.3 Design of Snowdrift Protection Structures
- 6.3.1 Design of Snowdrift Fences and Wind Baffles
- 6.3.1.1 Principles of Design
- 6.3.1.2 Structural Systems of Snowdrift Fences and Wind Baffles
- 6.3.1.3 Action and Action Combinations
- 6.3.1.4 Construction Principles
- 6.3.2 Design of Wind Roofs (Jet Roof)
- 6.3.2.1 Principles of Design
- 6.3.2.2 Structural Systems
- 6.3.2.3 Action and Action Combinations
- 6.4 Design of Avalanche Catching, Deflection and Retarding Structures
- 6.4.1 Determining of the required Height of Catching and Deflection Dams (Classical Approach)
- 6.4.2 Determining the required Height of Catching and Deflection Dams by a more physically based Approach
- 6.4.2.1 General Principles of Design
- 6.4.2.2 Catching and Deflection Dams
- 6.4.2.3 Avalanche Guiding Walls
- 6.4.2.4 Storage Capacity
- 6.4.2.5 Actions on Avalanche Deflection and Retarding Dams
- 6.4.3 Geotechnical Design of Avalanche Deflection and Retarding Dams
- 6.4.3.1 Fundamentals of Geotechnical Dam Design
- 6.4.3.2 Rules of Dam Construction
- 6.5 Design of Avalanche Breakers
- 6.5.1 General Remarks
- 6.5.2 Actions on Avalanche Breaker and Structural Systems
- 6.5.3 Constructive Design
- 6.6 Design of Avalanche Galleries (Tunnels)

7 Construction Work and Maintenance of Structural Avalanche Control

- 7.1 Construction Work (Avalanche Defense Structures)
- 7.1.1 Fundamentals of Construction Work in Alpine Environments
- 7.1.1.1 Conditions on Avalanche Control Construction Sites
- 7.1.1.2 Demands for Building Methods and Construction Machines in Avalanche Control
- 7.1.2 Construction Site Facilities and Infrastructure
- 7.1.2.1 Construction Site Facilities: Overview and Requirements
- 7.1.2.2 Social and Office Rooms, Housing for Workers
- 7.1.2.3 Storage and Handling of Construction Material and Equipment
- 7.1.2.4 Supply and Disposal at Construction Zones
- 7.1.3 Transportation Systems on Avalanche Defense Construction Sites
- 7.1.3.1 Principles of Transportation
- 7.1.3.2 Transportation Road
- 7.1.3.3 Material Ropeway and Cable Cranes
- 7.1.3.4 Heavy Transport Helicopters
- 7.1.4 Special Construction Methods in Avalanche Defense in the Starting Zone
- 7.1.4.1 Principles of Construction Work in Avalanche Control
- 7.1.4.2 Construction of Micropile Foundations and Drill Technology

Verlag Ernst & Sohn, Advertising Dept. Rotherstr 21, 10245 Berlin, Germany, Tel + 49(0) 30/47031-234, Fax -230, E-mail: fred.doischer@wiley.com [^] www.ernst-und-sohn.de

- 7.1.4.3 Construction of Wire Rope Anchors
- 7.1.4.4 Construction of Ground Plate Foundation
- 7.1.4.5 Construction of Concrete Foundation
- 7.1.4.6 Construction of Micropile Foundation in Solid Rock (Rock Anchor)
- 7.1.4.7 Mounting Methods for Snow Supporting Structures
- 7.1.5 Safety Engineering in Avalanche Control
- 7.1.5.1 General Principles of Employee Protection at Construction Zones in Alpine Environment
- 7.1.5.2 Preventive Employee Protection (Prior Start of Construction)
- 7.1.5.3 Requirements for Employees on Avalanche Control Construction Zones
- 7.1.5.4 Personal Protective Equipment (PPE)
- 7.1.5.5 Fall Protection Equipment and Scaffolding
- 7.1.5.6 Safety Regulation for Helicopter Transportation
- 7.2 Maintenance of Avalanche Defense Structures
- 7.2.1 Principles of Maintenance
- 7.2.2 Maintenance Management and Condition Assessment
- 7.2.2.1 Life-cycle of Avalanche Defense Structures
- 7.2.2.2 Functions and Strategies of Maintenance
- 7.2.2.3 Inspection and Condition Monitoring
- 7.2.3 Damage and Functional Defects of Avalanche Defense Structures
- 7.2.3.1 Overview and Classification
- 7.2.3.2 Causes for Damages and Functional Deficits
- 7.2.3.3 Damage Analysis and Condition Assessment
- 7.2.3.4 Damages at Snow Supporting Structures
- 7.2.3.5 Damages at Avalanche Dams
- 7.2.3.6 Damage at Avalanche Galleries and Tunnels
- 7.2.3.7 Damage to Snowdrift Structures
- 7.2.4 Maintenance Measures for Avalanche Defense Structures
- 7.2.4.1 Methods of Maintenance
- 7.2.4.2 Methods of Renovation
- 7.2.4.3 Urgency of Maintenance Measures
- 7.2.4.4 Renovation Methods for Avalanche Walls
- 7.2.4.5 Renovation Methods for Snow Supporting Structures
- 7.2.4.6 Renovation Methods for Snow Nets
- 7.2.4.7 Costs of Maintenance and Renovation

8 Building Protection (Direct Protection) Measures

- 8.1 Structural Building Protection Measures
- 8.1.1 Principles of Building Protection against Avalanches
- 8.1.2 Avalanche Action on Buildings
- 8.1.3 Structural Measures at the Building
- 8.1.3.1 Shape and Orientation of the Building
- 8.1.3.2 Constructive Building Protection Measures
- 8.1.3.3 Building Protection Measures with temporary Effect
- 8.1.3.4 Design and Commercial Products for Building Protection against Avalanches
- 8.1.4 Structural Measures in Front of the Building
- 8.1.4.1 General Remarks
- 8.1.4.2 Avalanche Splitting Wedges

- 8.1.4.3 Roof Terrace
- 8.1.4.4 Impact Walls
- 8.1.5 Building Defense Measures for other Structures
- 8.2 Safety Concepts for Buildings endangered by Avalanches

9 Artificial Release and Monitoring Technology for Avalanches

- 9.1 Methods of Temporary Avalanche Defense
- 9.2 Artificial Release of Avalanches
- 9.2.1 General Remarks
- 9.2.2 Fundamentals of Artificial Release of Avalanches
- 9.2.3 Effects of Artificial Release
- 9.2.4 Methods of Artificial Avalanche Release: Overview
- 9.2.5 Comparison of Methods: Effects and Efficiency
- 9.2.6 Safety Requirements and Risks of Artificial Avalanche Release
- 9.2.7 Construction and Operation of Selected Artificial Release Systems
- 9.2.7.1 Gazex®
- 9.2.7.2 Wyssen Avalanche Tower LS12-5®
- 9.2.7.3 Avalanche Protection System Innauen-Schätti in the Scuol-Ftan-Sent Ski Area, Switzerland
- 9.3 Avalanche Monitoring Technology
- 9.3.1 Principles of Avalanche Monitoring
- 9.3.2 Meteorological Monitoring
- 9.3.2.1 Fundamentals
- 9.3.2.2 Automatic Weather Stations
- 9.3.2.3 Weather Radar
- 9.3.3 Monitoring Snow Cover
- 9.3.4 Monitoring Snow Mechanics
- 9.3.5 Monitoring with Remote Sensing Technology
- 9.3.6 Monitoring Snow Forces on Avalanche Defense Measures
- 9.3.7 Monitoring Avalanche Dynamics
- 9.3.7.1 Systems for Monitoring Avalanche Motion
- 9.3.7.2 Measuring Avalanche Impact Forces with Load Cells
- 9.3.7.3 Measuring Avalanche Flow Depth
- 9.3.7.4 Measuring Velocity with Optical Sensors
- 9.3.7.5 Measuring Velocity with Pulsed Dual Doppler Radar

10 Technical Avalanche Protection international: Facts and Figures

Literature

The following institutions and experts have contributed to the survey:	The followin	g institutions and	d experts have	contributed to	the survey:
--	--------------	--------------------	----------------	----------------	-------------

Austria (A)	Florian Rudolf-Miklau (Federal Ministry for Agriculture, Forestry, Environment and Water Management)		
Switzerland (CH)	Stefan Margreth (WSL Institute for Snow and Avalanche Research SLF)		
France (F)	Francois Rapin (IRSTEA, ETNA St. Martin D'Herès)		
Germany (Bavaria) (D)	Bernhard Zenke (Bavarian Federal Office for Environment, Avalanche Warning Service)		
Italy (South Tyrol) (IT)	Rudolf Pollinger (Autonomous Region of Trentino- Alto Adige, Bolzano)		
Norway (N)	Krister Kristensen (Norges geotekniske institutt NGI, Oslo)		
Iceland (IS)	Tomas Johannesson (Veðurstofa Islands, Reykiavik)		
Spain (Catalonia) (E)	Pere Oller (Institut Geológic de Catalunya, Barcelona)		
Canada (CND)	Chris Stethem (Chris Stethem & Associates Ltd., Canmore)		
United States of America (USA)	Art Mears (Arthur I. Mears, P.E., Inc., Gunnison/CO)		
Japan (J)	Yasuo Ishii (Snow Avalanche and Landslide Research Center, Myoko-City, Niigata Precture)		

