Author(s): | |
Title: | A physical approach for considering how anchorage head size influences the punching capacity of slabs strengthened with vertical steel bolts |
Abstract: | The introduction of new vertical steel bolts is an easy, practical and common solution for retrofitting and strengthening slabs for punching. Although a common option where punching strengthening is concerned, few studies exist regarding how the bolt's anchorage dimensions and its embedment in the concrete slab affect the strengthening efficiency. This work presents an analytical approach that is able to predict the punching capacity of slabs strengthened with post-installed vertical steel bolts, taking into account the anchorage dimensions and positioning plus the material properties. This approach results from the combination of two physical models: one provided in the fib Model Code for Concrete Structures 2010 regarding the punching capacity estimation, and another that allows the deformation (crushing) of the concrete beneath the head of the anchorage to be taken into account. The predicted values are compared with experimental results, showing that the analytical approach is able to simulate correctly the anchorage behaviour and its influence regarding a slab's loadbearing capacity. A parametrical analysis is carried out in order to study the importance of different factors such as concrete compressive strength, longitudinal reinforcement ratio and steel bolt length, always accompanied by the effect of anchorage head size and embedment. |
Source: | Structural Concrete 14 (2013), No. 4 |
Page/s: | 389-400 |
Language of Publication: | English |
I would like to buy the article
You can download this article for 25 € as a PDF file (0.91 MB). The PDF file can be read, printed and saved. Duplication and forwarding to third parties is not allowed. |
I am an online subscriberAs an online subscriber of the journal "Structural Concrete" you can access this article via Wiley Online Library. |
I would like to order "Structural Concrete"This article has been published in the journal "Structural Concrete". If you would like to learn more about the journal, you can order a free sample copy or find out more information on our website. |