Author(s): | |
Title: | |
Abstract: | Hochbelastbare, dünnwandige Biegeträger aus Faser-Kunststoff-Verbunden haben vielfältige Anwendungen im konstruktiven Ingenieurbau. Dünnwandige Bauteile neigen bei hoher Belastung zu Profilverformungen und Beulen. Daher müssen derartige Versagensarten bei der Bemessung beachtet werden. Speziell bei Faser-Kunststoff-Verbunden können außerdem intralaminare und interlaminare Versagensarten auftreten. Diese Eigenschaften verbunden mit der heterogenen Struktur von Faser-Kunststoff-Verbunden führen zu einer aufwändigen Modellierung des Werkstoff- und Strukturverhaltens. Besondere Beachtung erfordert dort insbesondere die numerische Umsetzung. Innerhalb des von der Deutschen Forschungsgemeinschaft geförderten Projekts “Große, hochbelastbare Biegeträger aus Faser-Kunststoff-Verbunden“ sind Finite-Elemente-Modelle zur Analyse des Tragverhaltens hochbelasteter Faserverbund-Biegeträger entwickelt worden. Dabei wurden 4-knotige Schalenelemente mit fünf oder sechs Freiheitsgraden an den Knoten verwendet, damit auch Kanten abgebildet werden können. In dem implementierten Modell werden räumliche Probleme mit zweidimensionalen Schalenmodellen erfasst. Zur Untersuchung des Einflusses von Delamination kamen so genannte Interface-Elemente zum Einsatz, die auf einem Kohäsiv-Zonen-Modell basieren. In diesem Beitrag werden die Ergebnisse einiger mit dem entwickelten Modell durchgeführten nichtlinearen Finite-Elemente-Analysen vorgestellt. Highly loaded CFRP-beams: Load bearing and stability analysis of box girders. Highly-loaded, thin-walled girders are in high demand in structural engineering. Thin-walled structural elements are prone to exhibit warping of the cross section and buckling when subjected to high loads. Therefore, such phenomena need to be investigated. Additionally, with fiber-reinforced composites, intralaminar and interlaminar failure modes have to be considered. These characteristics along with the heterogeneous structure of fiber-reinforced composite plastics lead to complex modeling of the material and structural behavior. Special attention must be paid to the numerical implementation. In the joint project “Large high-strength fiber-reinforced polymer beams”, funded by the German Research Foundation, finite element models for the analysis of load bearing characteristics of highly loaded fiber-reinforced composite beams were developed. In the process 4-node shell elements with five or six degrees of freedom at the nodes were used, in order to be able to model shell intersections. With the approach used three-dimensional problems can be modeled with two-dimensional shell models. To investigate the influence of delamination, so called interface-elements were used, which are based on a cohesive zone model. In this article the results of some finite element analyses conducted with the developed model are presented. |
Source: | Stahlbau 82 (2013), No. 6 |
Page/s: | 464-469 |
Language of Publication: | German |
I would like to buy the article
You can download this article for 25 € as a PDF file (0.64 MB). The PDF file can be read, printed and saved. Duplication and forwarding to third parties is not allowed. |
I am an online subscriberAs an online subscriber of the journal "Stahlbau" you can access this article via Wiley Online Library. |
I would like to order "Stahlbau"This article has been published in the journal "Stahlbau". If you would like to learn more about the journal, you can order a free sample copy or find out more information on our website. |